CEDRAT TECHNOLOGIES proposes new patented cost effective contact less sensors. The concept is so modular and versatile that customized OEM products can be rapidly developed.

CEDRAT TECHNOLOGIES offers an innovative solution for contactless torque measurement. The concept is based on the use of a torsion converter and a proximity sensor. The nominal sensing solution relies on a new PCB based Eddy Current Sensor (ECS) developed by CEDRAT TECHNOLOGIES. The contactless torque sensor (CTS) can be provided with a digital signal processing software and a compatible electronic card.

**Advantages of CTS:**

- Cost-effective modular approach
- Ease of integration
- Solid state design
- Stationary axle or rotating shaft
- Working in harsh environment (dust or sand, oil, water)
- Reliable measurement
- Compatibility with all types of shaft materials
- Possible torque measurement at zero speed
- Angle and speed measurement (options)

**Applications in:**

- Production Process Monitoring
- Power plants
- Wind-electric power stations
- Automotive (steering, gearing...)
- Drilling systems
- Textile machines
- Mechanical conveying technology
- Household appliances
- Step-Over Electric Bikes
- And much more...
CTS Concept

A torque applied on a shaft naturally generates a torsion deformation of the shaft. The CTS is designed to measure this torsion. This measurement is performed by 2 sub systems:

- **The torsion converter**: it is an elastic body fixed on the shaft. The converter transforms torsion deformation into linear displacement detected by a **proximity sensor** (Fig.3). In another terms, the converter (Fig.4) transforms angular shift into significant axial shifts of two targets in a direction along the shaft axis. The torsion converter can include a shaft (Fig. 1) or be located onto an existing shaft (Fig.2). The shaft can be a stationary axle or a rotating shaft.

- **A proximity sensor**: located in front of the targets, the proximity sensor detect the target linear motions and provide a signal image of the applied torque. Several types of proximity sensors can be used. Nominal solution proposed by CEDRAT TECHNOLOGIES consists in new cost effective PCB-based ECS probes combined with the ECS75 electronics card designed by CEDRAT TECHNOLOGIES (Fig.5). The speed and angle can also be proposed as options without any additional components.

![Converter Principle](Fig.4)

**Table 1: Preliminary characteristics of the Contactless Torque Sensor.**

<table>
<thead>
<tr>
<th>Reference</th>
<th>Unit</th>
<th>CTS1</th>
<th>CTS10</th>
<th>CTS500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement range</td>
<td>N.m</td>
<td>0 ... 1</td>
<td>0 ... 10</td>
<td>0 ... 500</td>
</tr>
<tr>
<td>Speed</td>
<td>Rpm</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>Resolution</td>
<td>%</td>
<td>0.1 % Full scale</td>
<td>0.1 % Full scale</td>
<td>0.1 % Full scale</td>
</tr>
<tr>
<td>Accuracy</td>
<td>%</td>
<td>2 %</td>
<td>2 %</td>
<td>2 %</td>
</tr>
<tr>
<td>Repeatability</td>
<td>%</td>
<td>2 %</td>
<td>2 %</td>
<td>2 %</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>Hz</td>
<td>Up to 2000</td>
<td>Up to 2000</td>
<td>Up to 2000</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>°C</td>
<td>[0 ; 70]</td>
<td>[0 ; 70]</td>
<td>[0 ; 70]</td>
</tr>
<tr>
<td>Output</td>
<td>V (DC)</td>
<td>±10 V</td>
<td>±10 V</td>
<td>±10 V</td>
</tr>
<tr>
<td>Dimensions</td>
<td>mm3</td>
<td>Ø30x30mm</td>
<td>Ø65x50mm</td>
<td>Ø130x100mm</td>
</tr>
<tr>
<td>Nominal shaft diameter</td>
<td>mm</td>
<td>Ø 5mm</td>
<td>Ø 15mm</td>
<td>Ø 40mm</td>
</tr>
</tbody>
</table>

Collaborations

New developments of CTS are performed for high-precision compact Robot Joints in the context of MANUNET SMART JOINT project. The MANUNET SMART JOINT project is co-funded by the European Union. Europe engages itself in France with the Regional Development Funds (FEDER).

In 2010 a co-development agreement regarding a contactless displacement measurement system was also concluded between CEDRAT TECHNOLOGIES, UTC and CETIM.