Cedrat Technologies, innovation in mechatronicsCedrat Technologies, innovation in mechatronics

Cedrat Technologies, innovation in mechatronics

Device & Systems

A new Rotating Voice Coil Motor for Meteosat Third Generation satellites

In the frame of the Meteosat Third Generation project (MTG), the future European Operational Geostationary Meteorological Satellites system, Cedrat Technologies has developed a dedicated actuator for the Scan Assembly mechanism (SCA) made by SENER. Such motors are needed to actuate the SCA on the north/south (N/S) and east/west (E/W) axes. The requirement of precise pointing of the SCA induces very specific characteristics for the motorisation. The motor needed characteristics are: to be free from any cogging, high constant motor [N.m/√W] to have a constant torque over full stroke range, to have a very low hysteresis and to have redundant coils. To meet these stringent requirements, the choice was made to develop a specific Rotating Voice Coil Motor.

30.06.2014

MICA actuator: highly dynamic controllable magnetic actuators

Moving Iron Controllable Actuator is a concept of linear magnetic actuator that is especially designed to respond to the need of highly dynamic controllable actuators. The article presents the specificity of the actuator compared to more classical magnetic actuator concepts. It points out the interest of its properties and describes technological issues it implies. A MICA prototype has been built and its main performances are given: 800N, 20A, with a size 160*200*150. The controllability of the actuator has been demonstrated by simulation using force characteristic of MICA. Finally, the prototype will be declined in a full range of magnetic actuators as products of Cedrat Technologies.

30.06.2012

Limited Angle Torque for fine angular positioning

Abstract: A Limited Angle Torque (LAT) actuator has been designed by Cedrat upon request of the European Space Agency (ESA) for fine pointing applications based on gimbals assembly. The required angular stroke for this application is 13°. Other required features are controllability, high resolution, no micro vibration. Therefore the selected concept is a coil-redounded electromagnetic actuator using Lorentz force. The functional test shows that the generated torque is linear until 200mN.m, but torques up to 300mN.m are achievable.

31.05.2010

ACTUATOR2008 Moving Iron Controllable Actuators

To meet the demand of controllable millimeter-stroke actuators, there are two possible starting points. One is to consider improvement of moving coil actuators, the other is to consider improvement of moving iron actuators. Following this approach and using its experience on the different types of magnetic actuators, Cedrat Technologies has developed new specific Moving Iron Controllable Actuators, called MICA. This actuator circumvents previous controllability limitations of standard Moving Iron actuators while keeping their high forces capabilities. Compared with moving coils of the same force, the MICA are twice less in mass while requiring 3 times less electric power. Another significant advantage of the MICA is a much better heat dissipation and reliability as the MICA coil is fixed into the iron stator.

01.06.2008

ACTUATOR2008 MRF actuators Abstract

Short Abstract The MRF actuators are new electromechanical components using Magneto Rheological Fluids (MRF). When submitted to a high enough magnetic field, MRFs switch from a liquid to an almost solid body. The purpose of the new developed MRF actuators is to reach three aims: to offer a blocking force at rest, which can be strongly reduced by applying a current, to provide an electrically- controllable resistive force over a stroke of 30 mm, to perform the control of the force in a very short time, typically in a few milliseconds.

31.03.2008

LDIA2007 Moving coil or moving iron controllable actuators

There is a strong demand of controllable actuators for both traditional and new applications. A controllable actuator should be able to accelerate, break, inverse the motion of the load, all along the stroke. It means the force produced by the actuator should be proportional (at least roughly) to the applied electric excitation, and in particular, the sign of the actuation force could be changed all along the stroke.

31.12.2006

Control of magnetic actuators in electric contactors by current shapping

Most of present electric contactors use magnetic actuators of reluctant type (so called electromagnets) that are supplied with a simple voltage source. The use of a reluctant actuator in this condition leads to a considerable force increase when the magnetic circuit is closing, which creates damaging rebounds of the electrical contacts. To have a better control of the closing dynamics, we develop an electric drive method to reduce impact speed and to improve the closing dynamics. In this method, the reluctant actuator structure is unchanged. The appropriate current shape to be injected into the actuator is determined using a calculation method.

31.07.2006