Cedrat Technologies, innovation in mechatronicsCedrat Technologies, innovation in mechatronics

Cedrat Technologies, innovation in mechatronics

Moving Iron Controllable Actuator : Performances in close loop control

Moving iron controllable actuator (MICA) is a highly controllable Actuator. It has a robust mobile part with elastic guiding for a long life. The article presents the performances of the MICA when it is driven in a closed loop and shows impressive results achieved by IDEKO on a SOLARUCE milling machine.


High power force oscillator and drive electronics

This paper presents the development of one amount the largest piezo actuator ever designed based on low voltage PZT. This actuator is able to provide more than 20kN of force in dynamic operation (60kN in static operation). The purpose of low frequency vibration generation is to improve the quality of parts production in the field of manufacturing and machining process.


MICA actuator: highly dynamic controllable magnetic actuators

Moving Iron Controllable Actuator is a concept of linear magnetic actuator that is especially designed to respond to the need of highly dynamic controllable actuators. The article presents the specificity of the actuator compared to more classical magnetic actuator concepts. It points out the interest of its properties and describes technological issues it implies. A MICA prototype has been built and its main performances are given: 800N, 20A, with a size 160*200*150. The controllability of the actuator has been demonstrated by simulation using force characteristic of MICA. Finally, the prototype will be declined in a full range of magnetic actuators as products of Cedrat Technologies.


Rotation free linear actuator

This paper presents the development of a rotation free linear actuator: The use of highly dynamic actuator in the rotating frame, such as piezo actuator, required dedicated devices to transmit the electrical power from the static frame to the rotating one. Slip rings and rotating transformers are able to provide this function. However the integration of such components required invasive operations


Investigations on a directly coupled piezoactuated tool feed system for micro electro discharge machine

A directly coupled piezoactuated tool feed mechanism is proposed and a prototype micro-electrodischarge machine (micro-EDM) is developed. The piezoactuator is used to feed the tool and also to sense the tool displacement from a reference position. The hysteresis behavior of the piezoactuator is also incorporated through an electromechanical model for estimating the actual tool displacement. Simulation results for piezoactuator displacement are compared with the experiment and a maximum error of 15% was observed. Further, in order to control the tool feed rate during machining, a tool feed controller based on the gap voltage feedback is developed.


Self-tuning semi-active tuned-mass damper for machine tool chatter suppression

Tuned mass dampers are simple and efficient devices for suppression of machine tool chatter, which is one of the principal effects limiting productivity in many machining processes. However, their effectiveness depends on a proper tuning of the damper dynamics to the dynamics of the machine. This involves the dynamic characterisation of the machining process, in order to identify the critical resonance frequency, and the possibility of matching the resonance frequency of the damper to frequency. The difficulty of meeting these two requirements has been limiting the use of tuned mass dampers in industrial applications.


Servo piezo tool SPT400MML for fast and precise machining of free forms

Recent requirements for accuracy and resolution demand higher quality in the machining of precision parts in many industries—such as optics, automotive and aerospace—by free form machining. The required operations are possible by using expensive manufacturing equipment in parallel with several processes such as grinding and polishing. By using a new fast tool servo, the so-called servo piezo tool SPT400MML, driven by a piezoelectric actuator for the precision diamond turning of non-symmetrical surfaces, components can be machined with a fast motion control of the tool (diamond or carbide).


Our products catalogue is available !

Download it