Cedrat Technologies, innovation in mechatronicsCedrat Technologies, innovation in mechatronics

Cedrat Technologies, innovation in mechatronics

ATLID BSA Beam steering assembly piezo tip tilt

ATLID (ATmospheric LIDar) is one of the four instruments of EarthCARE satellite, it shall determine vertical profiles of cloud and aerosol physical parameters such as altitude, optical depth, backscatter ratio and depolarisation ratio. The BSA (Beam Steering Assembly), included in emission path, aims at deviating a pulsed high energy UV laser beam to compensate the pointing misalignment between the emission and reception paths of ATLID [1]. It requires a very high stability and high resolution.

25.05.2020

BSMA with connector saver

Beam splitter mechanism actuator for IASI NG

The Infrared Atmospheric Sounding Interferometer New Generation (IASI-NG) is a key payload element of the second generation of European meteorological polar-orbit satellites (METOP-SG) dedicated to operational meteorology, oceanography, atmospheric chemistry, and climate monitoring.

09.03.2020

Magnetic fast steering mirrors

Large Stroke Fast Steering Mirror for Space Free-Space Optical communication

Free-Space Optics and Deep Space Optical Communication request new compact low-power high-stroke high-bandwidth Fast Steering Mirrors. To address this need, CEDRAT TECHNOLOGIES has developed a Magnetically-actuated Fast Steering Mirror called M-FSM, taking heritage of its MICA™ technology. This mechanism offers Rx Ry strokes larger than +/-2° with a 250Hz bandwidth when tilting a 10mm-diameter mirror. Closed loop control is achieved using integrated eddy current sensors. Requested power is reduced leading to low heating and allowing high duty cycle. Vibration tests allow to define first limits and conditions for the M-FSM to bear external vibrations.

03.02.2020

Piezo technology in Synchrotron

Synchrotrons need robust products. That’s why the association of piezo actuator technology and CEDRAT TECHNOLOGIES (CTEC) know-how has been successful for synchrotron mechanisms projects. The technological brick is the “Amplified Piezo Actuator” (APA®) tested and widely used in space applications, it is often implemented in CTEC piezo mechanisms and provides a high level of robustness. Modifying the layout and the number of APA® allows several needs to be addressed within beamlines. Three applications developed in collaboration with the EMBL, PAL and SOLEIL will be presented in this paper. The first application consists of cutting a beam with a piezo shutter. The maximum beam diameter is 3 mm. The second mechanism allows the energy of a beam to be modified by using a series of piezo actuated filters. And the last mechanism aims at modifying the beam section shape with an active piezo micro-slits mechanism.

10.08.2018

Development of magnetic fast steering mirror prototype for optical pointing applications

Fast Steering Mirrors are core products continuously developed by Cedrat Technologies (CTEC) for optical pointing applications, for Space, and Optronic domains. During the last decade, main development efforts where focused on piezoelectric mechanisms technology, in order to achieve ultra-high frequency bandwidth control performance over small angle strokes. New applications under maturation in Europe, such as laser optical communication, require much higher angle strokes compared to the existing state of the art, which cannot be easily achieved by piezoelectric technology. Therefore CTEC is focusing on the development of a new Fast Steering Mirror family based on high angle stroke magnetic actuators. This paper presents this new steering mechanism concept, and the prototype performance results expected.

06.07.2018

Active-flap-including-actuator

Beam steering mirrors: from space applications to optronic applications

Fast growing Laser and new optic applications drive more and more needs for beam steering mirrors (BSM) and Fast Steering Mirror (FSM). For space optic instruments, CEDRAT TECHNOLOGIES has developed for 20 years several piezoelectric tip-tilt mechanisms. Presented recent examples include the ATLID BSA small tit tilt for quasi static nano pointing and MEFISTO, a large tit tilt for fast micro positioning. These space mechanisms perform high precision functions while being compact, lightweight and resistant to external vibrations and shocks. As shown in the paper, these advantages allow these technologies addressing several needs for other optronic applications than space, such as active stabilisation, micro scanning, disturbance compensation in IR imagers or telescopes.

26.02.2018

Design and tests of a demonstrator for filet compensation mechanism

Future matrix sensors will acquire an area on ground and are then susceptible to image shift due to satellite movement during acquisition. Design, Build and Test a breadboard mechanism that could shift telescope line of sight and freeze observed area during image acquisition.

01.05.2016