Cedrat Technologies, innovation in mechatronicsCedrat Technologies, innovation in mechatronics

Cedrat Technologies, innovation in mechatronics

Voice coil actuators for two MTG instruments

While Cedrat Technologies has been active in space for more than 20 years with piezoelectric mechanisms, we have also been increasingly involved over the last few years in the development of magnetic actuators for space projects. In this paper, a focus is made on the case of magnetic actuators that are developed in the frame of the Meteosat Third Generation (MTG) project. The first one is the Scan Assembly (SCA) actuated by Rotating Voice Coil Motors (RVCM) for the East/West (E/W) axes and the North/South (N/S) axes developed in collaboration with Sener and the second one is the Voice Coil Motor (VCM) developed in collaboration with CSEM for the Corner Cube Mechanism (CCM)


Tip tilt mechanism

Long stroke/High resolution tip tilt mechanism

Multi degree of freedom (dof) mechanisms are widely required into micro or macro manipulation fields as well as in optronics functions. Commonly available mechanisms may be divided into two main categories. The first is industrial robots (serial or parallel). These offer large range of motion, in rotation and translation. Their resolution is usually limited in the sub-millimeter range. The second category achieves very high resolution motion (sub-nanometer) but is limited to a few decades of microns. A way to combine both long stroke and resolution is to use piezo motors into multi dof mechanisms. The aim of this paper is to present a combination of both advantages into a low volume tripod actuator. The Tripod Actuator by Cedrat Technologies (TrAC) is a 3 dof mechanism offering +/-35° rotation around X and Y axis and a 10mm Z translation stroke into a low volume of Ø50x50mm.


Actuators for Space Applications: State of the Art and New Technologies

Actuators in space are broadly used to operate satellites’ platform and payload devices. Despite their common utilisation, actuators still represent critical subsystems as their failure might often lead to severe, when not catastrophic, effects on the spacecraft operations. Environmental conditions to which actuators are exposed in space are generally not favourable: operating temperature ranges and deep vacuum are certainly the most critical ones.


Modular Test bed for Performance Assessment of Piezoelectric Stick-Slip Actuators

Stepping piezoelectric actuators based on the stick-slip effect inherently make use of a friction contact between stator and rotor. This contact defines not only the actuator’s performance but also is prone to wear and tear. For broad use, the actuator has to be able to perform around 1 million strokes. To assess the actuator’s performance in terms of force, speed, mechanical output, electrical input, and long-term stability under different load- and environmental conditions, as well as different friction partners, a dedicated test-bed for a LSPA30µXS motor by Cedrat Technologies has been set up.


Beam steering mechanism for earthcare atmospherice Lidar Instrument: an improved piezo tip-tilt mechanism

In the context of the ATLID instrument [1] embedded in the EarthCARE mission (Earth Cloud, Aerosol and Radiation Explorer), a Beam Steering Assembly is deviating a pulsed high energy UV laser beam to compensate the pointing misalignment between the emission and reception paths of ATLID with a very high stability and high resolution. Within the EarthCARE mission, led by ESA, Astrium is responsible for the ATLID instrument. The BSA development, manufacture and tests were assigned by Astrium to Sodern, an EADS filial.


Improvement of Linear and Rotative Stepping Piezo Actuators using design and control

Stepping Piezo Actuators (SPA) are inertial piezo motors able to reach long stroke with important resolution. Previous work showed that large benefits in terms of speed and input current are taken from use of Amplified Piezo Actuators (APA®). The aim of this paper is to present new rotative configuration, advancements in maximal actuation force into thermal vacuum conditions and improvements using smart control.


Thermal vacuum behaviour of a stepping piezo actuator

The presented work illustrates the design of a new high force Stepping Piezoelectric Actuator (SPA) and describes its Thermal Vacuum testing as performed by ESTL, in order to investigate SPA compatibility with vacuum environment within a wide temperatures range; from +60°C down to -180°C. A dedicated test bench was designed, in order to check motor force and speed for all performed tests. Instrumentation, testing and observations about tribological behaviour of friction interface have been realized by ESTL, showing interesting perspectives.


Our products catalogue is available !

Download it