Cedrat Technologies, innovation in mechatronicsCedrat Technologies, innovation in mechatronics

Cedrat Technologies, innovation in mechatronics

Device & Systems

Improving Lamb Wave detection for SHM using a dedicated LWDS electronics

In the context of Condition Based Maintenance (CBM) for aircrafts, Structural Health Monitoring (SHM) is one main field of research. Detection and localization of damages in a structure request reliability of the equipment and repeatability of the measurements and process. An electronic device called Lamb Wave Detection System (LWDS) have been developed and manufactured to manage piezo-electric patches either in emission or reception mode with a high commutation rate. Besides, integration of the piezo patches is another crucial aspect of reliability. Several methods as modelling and dispersion curves can define the frequency range of Lamb waves to optimize the piezo-electric coupling. This work which takes part of the H2020 ReMAP project about adaptative aircraft maintenance planning, is presented in the article.

30.04.2020

PVDF-dome-loudspeaker

Study of a dome shaped PVDF loudspeaker

PVDF loudspeakers are used for some applications in audio and could be used for applications in active control where light structures are needed, for example in aeronautics. For all these applications, it is necessary to be able to predict the acoustic response of such systems in order to help the designer. Some papers propose models for calculating the acoustic pressure radiated by these loudspeakers.

03.02.2020

Robustness of SHM techniques based on lamb waves

Required improvements of piezoelectric elements actuation and measurement system efficiency and robustness are introduced as a critical feature for structural health monitoring (SHM) applications. An electronic module (Lamb wave detection system: LWDS) allowing to use each piezoelectric element in an array either in emission or reception mode is presented. The high commutation rate between these two states, for each transducer separately, is a key enhancement for SHM methods. The robustness of the sensor integration is also studied considering the patches size and bonding method. Coupled dispersion curve are introduced Comparison of FEM simulation and experiments of the piezo-electric coupling are presented. This work takes part of the H2020 REMAP project about adaptive aircraft maintenance planning.

15.07.2019

Tubular ultrasonic transducer: MUST with axial excitation versus conventional with radial excitation

This paper presents comparison between two excitation solutions for tubular ultrasonic transducer. The axial excitation is widespread in conventional ultrasonic transducer. The radial excitation is proposed in order to have an uniform acoustic energy all along the tube. This excitation approach is also proposed to allow the modularity by adding several tubes.

15.07.2019

Piezo-composite patches applied to the detection of defects using lamb wave focusing

Ultrasonic-based SHM (Structural Health Monitoring) applications usually rely on the use of piezo-electric patches to emit and receive ultrasonic surface acoustic waves. The principle is to study the propagation of the waves through a structure to assess its health. Because of the elevated number of echoes and possible modes of propagation of the acoustic waves within the structure, those applications suffer from a burden of signal processing. This paper presents a composite piezo-electric patch and its electronics that were designed and successfully tested for reducing the complexity of the SHM detection schemes.

31.12.2010

Piezo-composite transducer for mode and direction selectivity of Lamb waves

Ultrasonic-based SHM (Structural Health Monitoring) applications commonly rely on the use of piezo-electric patches to emit and receive ultrasonic waves. The objective is to study the propagation of the waves through a structure to assess its structural integrity. Because of the elevated number of echoes and possible modes of propagation of the waves within the structure, those applications suffer from a burden of signal processing. This paper presents a composite piezo-electric patch that was designed and successfully tested for reducing the complexity of the SHM detection schemes by selecting the mode and direction of the Lamb waves received. The piezo-composite is composed of a row of eight independent ceramic pillars separated with polymer, so it is a 1-D matrix of independent piezo-patches. Used with adequate electronics and signal processing, it was shown that it allowed selecting the direction and the mode of the Lamb waves.

31.12.2009

Giant dynamic strains in magnetostrictive actuators and transducers

Magnetostriction occurs in the most ferromagnetic materials and leads to many effects [1,2]. The most useful one to refer to is the Joule effect. It is responsible for the expansion (positive magnetostriction) or the contraction (negative) of a rod subjected to a longitudinal static magnetic field. In a given material, this magnetostrain is quadratic and occurs always in the same direction whatever is the field direction. Giant Magnetostrictive Materials (GMM), especially Rare earth-iron discovered by A.E.Clark [3], feature magnetostrains which are two orders of magnitude larger than Nickel. Among them, bulk Tb0.3Dy0.7Fe1.9, called Terfenol-D, presents the best compromise between a large magnetostrain and a low magnetic field, at room temperature.

31.12.2005