Cedrat Technologies, innovation in mechatronicsCedrat Technologies, innovation in mechatronics

Cedrat Technologies, innovation in mechatronics


Contactless Position sensors for space mechanisms based on eddy current sensing

For more than 20 years, CTEC has been involved in various space missions, delivering products designed for severe environment conditions (vibrations, shocks, vacuum, humidity, wide thermal range including cryogenic). Eddy current sensor (ECS) technology, using printed circuit board (PCB) for printed coils, provides both a good resolution/accuracy and a good robustness against temperature variations.These sensors are available commercially off the shelf (COTS).


MTG scan mechanism

Large stroke Rotary Voice Coil Motor for cryogenic application

CTEC is developing and testing Rotary Voice Coil Motors (RVCM) for new cryogenic space scan mechanisms applications, based on former MTG space program heritage. The RVCM is an electromagnetic motor based on Laplace force. The motor is composed of coils at the rotor part (mobile) and magnets at the stator part (fixed). The Laplace motor generates a pure torque, without cogging or parasitic force drawback, which makes it specifically relevant for scan mechanisms.



Magnetically actuated fast steering mirrors

Free-Space Optics (FSO) for optical communication request new compact low-power high-stroke high-bandwidth Fast Steering Mirrors (FSM). To address this need, CEDRAT TECHNOLOGIES has developed a Magnetically-actuated Fast Steering Mirror called M-FSM, taking heritage of its MICA™ actuators. This FSM offers Rx Ry strokes larger than +/- 2° with a 250Hz bandwidth when tilting a 31mm diam mirror. Requested power is minimized leading to low heating. Vibration tests have been performed to define first limits and conditions for the M-FSM to bear external vibrations. Large bandwidth closed loop control is achieved using integrated eddy current sensor and a state feedback-based controller.


FSPA35XS and Driving electronic

FSPA and BSMA Nanometric positioning actuators for ground and space applications

Many applications and more specifically space projects show need for a stable sub-micrometre positioning actuator. In order to meet this need, Cedrat Technologies has designed the new FSPA brand. This linear stepping actuator offers sub-micrometric positioning resolution along 5mm stroke combined with high actuation force (>100N) and the ability to hold its position without power. The IASI-NG instrument is one of the key payload on-board METOP-SG which is a new meteorological satellite for Europe. The instrument is based on a Mertz interferometer and requires a very precise positioning of an optical blade used to separate the interferometer’s branches. A dedicated version of the FSPA, the Beam Splitter Mechanisms Actuator (BSMA) is then developed to achieve this nanometric positioning which is a key parameter for the overall instrument performance. This paper firsts present the internals of both FSPA and BSMA actuators. Major design differences and their respective impact on the resulting performances are detailed. Results from the acceptance and qualification test campaigns are also presented.


Compressor breadboard with two stages

Zero Boil Off Compressor Based on MICA Actuators

A reed valve compressor technology for future science spacecraft application, is being developed by CEDRAT TECHNOLOGIES (CTEC), based on the very compact and high-power MICA300CM actuator (Moving Iron Controllable Actuator). The present publication details the compressor breadboard design and test results, manufactured in the frame of an ESA Technological Research Program (TRP), for the testing of a Zero Boil Off Hydrogen storage demonstrator. The test results presented have been realized at compressor level with Helium gas at CTEC facilities, and the full 20K Hydrogen storage demonstrator is soon to be tested.


SJA breadboard based on APA® actuator

High power synthetic jet actuator

High Power Synthetic Jet Actuator (SJA) based on compact piezoelectric actuators, have been developed and tested by CEDRAT TECHNOLOGIES (CTEC) and ONERA, under French National funding RAPID from DGA. This publication presents the modelling approach with early breadboarding results, the final design chosen for integration onto an aircraft airfoil mock-up, the performance test results on the SJA device prior integration, and the final aerodynamic performance test demonstration achieved at ONERA wind tunnel test facility.


Amplified piezo actuators

Compact sensitive piezoelectric mass balance for measurement of unconsolidated materials in space

In many in-situ instruments information about the mass of the sample could aid in the interpretation of the data and portioning instruments might require an accurate sizing of the sample mass before dispensing the sample. In addition, on potential sample return missions a method to directly assess the captured sample size would be required to determine if the sampler could return or needs to continue attempting to acquire sample.