Cedrat Technologies, innovation in mechatronicsCedrat Technologies, innovation in mechatronics

Cedrat Technologies, innovation in mechatronics

Tubular ultrasonic transducer: MUST with axial excitation versus conventional with radial excitation

This paper presents comparison between two excitation solutions for tubular ultrasonic transducer. The axial excitation is widespread in conventional ultrasonic transducer. The radial excitation is proposed in order to have an uniform acoustic energy all along the tube. This excitation approach is also proposed to allow the modularity by adding several tubes.


Amplified piezo actuator

New developments in piezo actuators: Long stroke actuators and high power electronics

In many cases piezoelectric actuators reach limitations in terms of maximum displacement and cycling frequency. Most amplified actuator technologies struggle to go over the millimeter of stroke. Furthermore certain closed-loop applications demand stroke measurement integrated into the actuator. While few amplifiers on the market can offer 20Amps current over a few 100ms, development of high power supply units runs parallel with actuator improvements. However with the introduction of high power supplies comes the problem of self-heating of the piezo ceramic. Finally extreme environmental conditions in terms of harsh conditions and high temperatures need to be addressed in order to open these markets for piezo actuators. Cedrat Technologies has been heavily investigating in solutions to overcome all of these drawbacks and these solutions are presented here.


Piezo proof mass actuator

Amplified piezo actuators enhancement for active vibration control

Amplified Piezo Actuators (APA®) from CEDRAT TECHNOLOGIES are known to be compact and especially performing in dynamic applications. The recent evolutions realized on the APA® and drive electronics allow them to address active damping better than magnetic proof mass in terms of the Force to Volume ratio above some 10Hz. The dynamic capability of the APA® has been improved thanks to preload method enhancement. Research has successfully shown the possibility to achieve a high dynamic force level similar to the static blocked force of the piezo actuator. This technical progress coupled with an amplified motion makes possible the generation of high mechanical proof mass load at relatively low frequency. It produces a force higher than 100N in a volume of Ø40x75mm within a range of [100-300Hz]. This paper presents relevant uses of APA® for active damping in machining applications. Several machining case studies are reported integrating Amplified Piezo Actuators within the spindle head, inside the cutting tool or beside the workpiece clamp.


Moving iron controllable actuator MICA300CM

Development of the plain bearing and flexure bearing MICA300CM actuator

The MICATM linear actuator family (Moving Iron Controllable Actuator) is being continuously improved at CEDRAT TECHNOLOGIES (CTEC) for applications needing high controllable stroke, force, and power. The MICA300CM is a new actuator model, having improved configuration based on cylindrical shape. A first version based on plain bearing offers up to 12mm stroke and 300N continuous force with a weigh of only 3kg. A second version is based on new frictionless flexure bearings. The former one is especially designed to achieve zero maintenance over several years of operation, with high efficiency, infinite resolution, and high controllability performance. This version of the MICA300CM has been derived to offer a proof mass configuration, for vibrationcancellation applications on machining processes. A latest version is also currently under design, and prototyping, specifically for reciprocating power piston applications, such as compressors, pressure wave generators, and pumps. Its high efficiency, ultra-long lifetime capability, and compactness, makes it perfectly suitable for embedded thermal machines based on Stirling, Joules Thomson, and Rankin Thermodynamic cycles. This paper presents this 4 design concepts, their test results and perspective for applications.


Amplified Piezo Actuator APA® with viscoelastic material for machine tool semi active damping system

Modern machine tools must achieve a high precision for a better surface texture and higher flexibility for wide range of machining requirements. To fulfill these requirements, a semi-active damping system for a new generation of machine tools is proposed. The new concept is partially based on the Amplified Piezo Actuators APA® from CEDRAT Technologies. With these actuators, the dynamic behavior (stiffness and damping) of structural body components of machine tools can be controlled and adjusted to the optimum parameters. To reduce the transfer of vibrations through the active elements, a viscoelastic material was used. This article presents test results performed on the APA® with viscoelastic material. A significant reduction of the vibrational amplitude at resonance frequency was observed with additional material. The optimized quantity of viscoelastic material reduces the full stroke of the actuator only by 10 percent. At the same time, the viscoelastic material has reduced the amplitude at resonance frequency by more than double. The designed actuator obtains a blocking force of 8.5kN. Results obtained from the tests performed on the machine tool showed significant surface texture improvement with use of the amplified piezoelectric actuator.


Moving Iron Controllable Actuators MICA™

Compact, Efficient and Controllable Moving Iron Actuation Chain for Industrial Application

In the field of aeronautics, some parts of aircraft engines are tricky and costly to manufacture. In the low pressure turbine very thin pieces obtained by turning require a complex support. The R&D work performed here aims at improving the manufacturing process through the reduction of vibrations and active modification of the clamping conditions. For that purpose, Cedrat Technologies has designed a new innovative Moving Iron Controllable Actuator (MICA), which is embedded on the work-piece support. In the first part, the application goals and the main particularities of the developed MICA200M magnetic actuator are presented. To be easily driven in closed loop, the force is designed to be linear with the current and independent from the interface position. The MICA200M stroke is ±2.5mm and its force constant reaches 11.6N/A for a current range of ±15A in steady state. The nominal force of 174N for only 1 dm3 size and 3.2kg facilitates the integration and allows acceleration up to 132G in transient operation thanks to reduced 0.25kg mobile mass. In the second part, results of complete experimental characterisation are detailed. Finally, a comparison analysis is done with COTS voice coil actuators and the article concludes with the benefits of the MICA200M.


New Paradigm in control of machining system's dynamics

Complex mechanical components machined with zero defects are an essential condition in precision manufacturing and it becomes a new challenge for the next generation intelligent machining systems. Improved precision and accuracy of machines, processes and components offers substantial benefits to a wide range of applications from ultra-precision to mass customization with higher quality and better reliability. Within this context, this paper identifies critical problems that limit the performance of the machining system and address them by advancing novel solutions.


Our products catalogue is available !

Download it