Cedrat Technologies, innovation in mechatronicsCedrat Technologies, innovation in mechatronics

Cedrat Technologies, innovation in mechatronics

Device & Systems

Advanced Landing Gears for Improved Impact Absorption

The presented project ADLAND (AST3-CT-2004-502793) dealt with evaluating the options for adaptive shock absorbers to be applied in aircraft landing gears. Analytical design procedures were developed to simulate different potential design options and a best practice solution determined. The different hardware components regarding adaptive shock absorbers were then developed and tested with regard to adaptive landing gear model. The objectives of the project were: to develop a concept of adaptive shock-absorbers, to develop new numerical tools for design of adaptive absorbers and for simulation of the adaptive structural response to an impact scenario, to develop technology for actively controlled shock-absorbers applicable in landing gears, to design, produce and perform repetitive impact tests of the adaptive landing gear model with high impact energy dissipation effect, to design, produce and test in flight the chosen full-scale model of the adaptive landing gear.

01.06.2008

Tunable proof mass based on a pendulum structure

Proof mass dampers are currently used in aircraft structures, but are not active, which introduce performance limitations. Proof Mass Actuators based on spring-mass structures are an interesting technique for active vibration control, but it is difficult to design them for operation below 100 Hz, especially if high dynamic forces are required. The proof of concept of a Tunable Proof Mass Actuator (TPMA) based on a pendulum structure has been assessed into the Mesema FP6 EC project targeting an Helicopter application.

01.06.2008

Self locking MRF actuators for dampers and latches

MRF actuators are new electromechanical components using Magneto Rheological Fluids (MRF). When submitted to a high enough magnetic field, MRF switch from a liquid to a near solid body. These new developed MRF actuators were developed in order to reach three aims: to offer a blocking force at rest which can be strongly reduced by applying a current, to provide an electrically-controllable resistive force over a stroke of 30 mm, to perform the control of the force in a very short time, typically in a few milliseconds.

01.06.2008

ACTUATOR2008 Moving Iron Controllable Actuators

To meet the demand of controllable millimeter-stroke actuators, there are two possible starting points. One is to consider improvement of moving coil actuators, the other is to consider improvement of moving iron actuators. Following this approach and using its experience on the different types of magnetic actuators, Cedrat Technologies has developed new specific Moving Iron Controllable Actuators, called MICA. This actuator circumvents previous controllability limitations of standard Moving Iron actuators while keeping their high forces capabilities. Compared with moving coils of the same force, the MICA are twice less in mass while requiring 3 times less electric power. Another significant advantage of the MICA is a much better heat dissipation and reliability as the MICA coil is fixed into the iron stator.

01.06.2008

ACTUATOR2008 MRF actuators Abstract

Short Abstract The MRF actuators are new electromechanical components using Magneto Rheological Fluids (MRF). When submitted to a high enough magnetic field, MRFs switch from a liquid to an almost solid body. The purpose of the new developed MRF actuators is to reach three aims: to offer a blocking force at rest, which can be strongly reduced by applying a current, to provide an electrically- controllable resistive force over a stroke of 30 mm, to perform the control of the force in a very short time, typically in a few milliseconds.

31.03.2008

LDIA2007 Moving coil or moving iron controllable actuators

There is a strong demand of controllable actuators for both traditional and new applications. A controllable actuator should be able to accelerate, break, inverse the motion of the load, all along the stroke. It means the force produced by the actuator should be proportional (at least roughly) to the applied electric excitation, and in particular, the sign of the actuation force could be changed all along the stroke.

31.12.2006

Ski embbeded piezo system

Since many years, the field of active control of vibrations has been growing up and many new applications using smart actuators have been developing. In 2003, CEDRAT TECHNOLOGIES in collaboration with SKI ROSSIGNOL initiated a project supported by ESA where these concepts (smart material and active control of vibration) were adapted and applied on a ski structure. The project aim was to damp the large modes of vibrations keeping the robustness of the control and the static loads during the ski ride.

31.08.2006