Cedrat Technologies, innovation in mechatronicsCedrat Technologies, innovation in mechatronics

Cedrat Technologies, innovation in mechatronics

Smart actuators for aircraft applications

Smart actuators and intelligent structures receive a considerable interest in the fields of Air & Space, to realise new functions or more efficient functions than passive structures. In these fields, there are needs for actuation means offering high mechanical energy density (product of stroke and force divided by the mass), a low power consumption, a resistance to severe environment (such as vibrations) as well as other case by case needs : High resolution (embedded active optics for cameras and telescopes), fast response (active control of structures shape, active damping of vibration)…


Magnetostrictive versus piezo Actuators

Magnetostriction occurs in the most ferromagnetic materials and leads to many effects [1,2]. The most useful one to refer to is the Joule effect. It is responsible for the expansion (positive magnetostriction) or the contraction (negative) of a rod subjected to a longitudinal static magnetic field. In a given material, this magnetostrain is quadratic and occurs always in the same direction whatever is the field direction.



Magnetic field induced strain materials are classically represented by Giant Magnetostrictive Materials (GMM) such as Tb-Dy-Fe alloys offering magnetostrain of 0.1-0.2%. This family of smart materials has been extended for some years by cryogenic magnetostrictive materials such as Td-Dy and (Tb1-xDyx)Zn offering magnetostrain of 0.2- 1%. Even more recently, it has been completed by new Magnetic Shape Memory Materials (MSM) such as Ni-MnGa offering magnetostrain of 2-6%. These materials have lead to quite various large stroke and large force actuators. Some of these actuators meet the requirements of applications in different fields such as space or machine tools. The object of this paper is to review the present situation and recent progresses in the field of magnetic field induced strain materials, actuators, modelling and applications, including commercial aspects.


Piezo qualification for space applications

Piezoelectric actuators are generally deemed good candidates for driving compact and efficient mechanisms, offering advantages like fine precision, fast time response, low power consumption, cost annd easier implementation. But to meet space, devices have to comply to many other requirements besides functional ones.