ATLID (ATmospheric LIDar) is one of the four instruments of EarthCARE satellite, it shall determine vertical profiles of cloud and aerosol physical parameters such as altitude, optical depth, backscatter ratio and depolarisation ratio. The BSA (Beam Steering Assembly), included in emission path, aims at deviating a pulsed high energy UV laser beam to compensate the pointing misalignment between the emission and reception paths of ATLID [1]. It requires a very high stability and high resolution.
25.05.2020
Free-Space Optics and Deep Space Optical Communication request new compact low-power high-stroke high-bandwidth Fast Steering Mirrors. To address this need, CEDRAT TECHNOLOGIES has developed a Magnetically-actuated Fast Steering Mirror called M-FSM, taking heritage of its MICA™ technology. This mechanism offers Rx Ry strokes larger than +/-2° with a 250Hz bandwidth when tilting a 10mm-diameter mirror. Closed loop control is achieved using integrated eddy current sensors. Requested power is reduced leading to low heating and allowing high duty cycle. Vibration tests allow to define first limits and conditions for the M-FSM to bear external vibrations.
03.02.2020
Fast growing Laser and new optic applications drive more and more needs for beam steering mirrors (BSM) and Fast Steering Mirror (FSM). For space optic instruments, CEDRAT TECHNOLOGIES has developed for 20 years several piezoelectric tip-tilt mechanisms. Presented recent examples include the ATLID BSA small tit tilt for quasi static nano pointing and MEFISTO, a large tit tilt for fast micro positioning. These space mechanisms perform high precision functions while being compact, lightweight and resistant to external vibrations and shocks. As shown in the paper, these advantages allow these technologies addressing several needs for other optronic applications than space, such as active stabilisation, micro scanning, disturbance compensation in IR imagers or telescopes.
26.02.2018
In Space & Defence (as well as in many others fields), there is a trend for miniaturisation in active optics requiring new actuators. Applications also often require the ability to withstand high vibrations and shocks levels, as well as vacuum compatibility for space applications. A new generation of small and smart actuators such as piezoelectric (piezo) actuators, are resolving this trend, thanks to their capacity to offer high energy density and to support both extreme and various requirements. This paper first presents the BSM mechanism and its requirements, the technologies involved in the design and the validation campaign results. Secondly, a derived XY piezoelectric positioning stage based on the same APA® and associated Strain Gage sensing technology is presented with its associated performances. Finally, a new piezoelectric motor based on the APA® technology, which allows the combination of long stroke while maintaining high resolution positioning of optical elements, is presented with experimental performances.
30.06.2015
A new tip tilt mechanism based on low voltage piezoelectric actuators has been designed by Cedrat Technologies to answer the high level of stability required for the Earthcare satellite. The Beam Steering Assembly aims to deviate a pulsed high energy UV laser beam to compensate for misalignment between the emission and reception paths of ATLID [1] with a very high stability and resolution. In this paper, the authors points out the BSM development with the main mechanism design issues including performances, mechanical and thermal stability; low power consumption; high integration level; high reliability and safety; cleanliness requirements and give the results of the qualification campaign done at Cedrat Technologies’ to establish the final functional performances in preparation of the Flight Models deliveries for the BSM.
31.10.2014
Multi degree of freedom (dof) mechanisms are widely required into micro or macro manipulation fields as well as in optronics functions. Commonly available mechanisms may be divided into two main categories. The first is industrial robots (serial or parallel). These offer large range of motion, in rotation and translation. Their resolution is usually limited in the sub-millimeter range. The second category achieves very high resolution motion (sub-nanometer) but is limited to a few decades of microns. A way to combine both long stroke and resolution is to use piezo motors into multi dof mechanisms. The aim of this paper is to present a combination of both advantages into a low volume tripod actuator. The Tripod Actuator by Cedrat Technologies (TrAC) is a 3 dof mechanism offering +/-35° rotation around X and Y axis and a 10mm Z translation stroke into a low volume of Ø50x50mm.
30.09.2014
Our products catalogue is available !
Download it