A wideband piezoelectric vibration energy harvester

Nabil BENCHEIKH1,2, Timotéo PAYRE1, Alexandre PAGES1, Aya BENHAMOU3, Adrien BADEL2
1 Cedrat Technologies, 59 Chemin du Vieux Chêne, 38240 Meylan
2 USMB SYMME, 5 chemin de Bellevue ANNECY-LE-VIEUX, CS 80439, 74944 ANNECY-LE-VIEUX CEDEX
*Corresponding author: nabil.bencheikh@cedrat-tec.com

Abstract — This paper focuses on the design of the bistable energy harvester based on a patented solution invented by the SYMME / USMB laboratory and using Amplified Piezoelectric Actuator (APA®) technology. A preliminary prototype is developed considering the lifetime and mechanical limitations. Experimental results are also given for swept sine and random vibration.

I. INTRODUCTION

The development of embedded and autonomous sensing solution is increasing in several industrial applications. The major constraints for the development of such devices is the availability of energy/power supply. Especially for applications implying a high cost for maintaining the function such as transport network (over cities, countries...). For these applications, solutions based on batteries have a lifetime increasing in several industrial applications. The equation of motion and the current expression are provided in (1) from [2, 3]. γ, C_p, and α are the stiffness, the capacitance and coupling constant of APA respectively. The APA120 S was considered for this study. M, D and R are the equivalent mass, the damping coefficient, and the resistive load respectively. γ is the base acceleration, x is the proof mass displacement and L is the beams length. x_0 is the buckling level and corresponds to the equilibrium position.

$$
\begin{align*}
M \ddot{y} &= M \ddot{x} - 2k \frac{x_0^2}{L^2} x + 2K \frac{L}{\pi^2} x^3 + D \dot{x} + \frac{2\alpha}{L} x \dot{v} \\
\dot{i} &= \frac{2\alpha}{L} \ddot{x} - C_p \dot{v}
\end{align*}
$$

B. The bistable response

The bistable response in terms of power and displacement was computed (the mean signal § II). Various values of M, L and x_0 were tested. In order maximize the harvested power while considering boundaries such as volume limitations and preliminary feasibility criterions (e.g., minimal x_0 physically feasible). As an illustration, the Figure 2 represents the expected power as a function of x_0 and M for $L=35$ mm. The red points correspond to the realizable configurations.

III. THE BISTABLE REPRESENTATION

A. The modeling

For the modeling, the architecture of the bistable energy harvester is simplified as given hereafter (FIGURE 1).

The dimensional parameter of the optimal design corresponds to $L = 35$ mm, $M = 5$ g and $x_0 = 0.85$ mm.
IV. MECHANICAL DESIGN

A. The amplified piezoelectric actuator constraint

The APA© consist of piezoelectric material installed inside a metallic shell for an amplification and preload purpose. Two limitations are considered: the dismounting of the piezoelectric material and the stress on the metallic shell. These limitations imposed a displacement limitation at 50 µm in compression and 480 µm in tensile.

B. The beam thickness

The beam width was fixed at 10 mm. The beam thickness had to be selected considering the limitations as it has a strong influence. The thickness must be limited to around 400 µm and 350 µm to not exceed the yield stress and APA© compression limits respectively. A thickness of 200 µm was considered for our prototype which correspond to 50 % of the yield stress.

V. PROTOTYPING AND EXPERIMENTS

A. Prototyping

The prototype is design and manufactured (Figure 3) according the optimal design (§ 0). The prototype allows the integration of different size of APA©.

![Figure 3. Prototype of bistable energy harvester](image1)

B. Experimentation

1) Swept sine vibration

The first evaluation is performed upon resistive load set at 1500 Ohm. The excitation vibration corresponds to swept sine vibration from 35 to 175 Hz at 3.5 g acceleration.

![Figure 4. The extracted power on the resistive load](image2)

The minimum dissipated power upon the resistive load is about 30 mW at frequency 90 Hz ± 60% (Figure 4). The power raises the 190 mW at 120 Hz.

2) Random vibration

In random vibration test campaign, two profiles of vibration are used. The first profile (PSD1) includes two peaks at 110 and 178 Hz. The second profile (PSD2) include only one peak at 110 Hz. The comparison between two profile is given below (Figure 5).

![Figure 5. The profile of PSD1 and PSD2 vibration](image3)

The power / energy extracted from the bistable energy harvester are measured (Figure 6). The level of acceleration is 3 grms and the duration is about 3 minutes.

![Figure 6. Power / energy extracted from bistable harvester with PSD1 and PSD2 vibration](image4)

The measurement shows a stability of the extracted energy even if there is a variation of the excitation signal.

VI. CONCLUSION

The broadband piezoelectric harvester has been presented in this document. The preliminary results show an available power of 30 mW at frequency 90 Hz ± 60% and 3.5 g acceleration. The random vibration test demonstrates a low sensitivity of the bistable energy harvester to two different PSD.

ACKNOWLEDGMENT

The RAILMON project has received funding from French financing and business development organization (BPI) through Support for the structuring research and development project for competitiveness programme (N° DOS1670841/00)

REFERENCES

