Objective

Stepping Piezoelectric Actuators (SPA) are new long-stroke linear piezoelectric motors for micro/nano positioning applications benefiting of the APA® heritage. They operate by accumulation of small steps. Between each step the actuator is locked in position. When the long stroke is performed, it can be also operated in a deformation mode for a fine adjustment. In this case, the stroke is proportional to the applied voltage, which leads to a nanometer resolution and a high bandwidth. This actuator can be supplied with CEDRAT TECHNOLOGIES standard Linear Amplifiers.

In summary, SPAs offer:
- A blocking at rest in any position (locking without power supply),
- A high stiffness,
- A nano positioning resolution all along the stroke
- Non magnetic behavior

Structure & operation modes

The SPA relies on few parts :
- The well-established Amplified Piezoelectric Actuators (see APA® data at www.cedrat.com),
- A front mass, a clamp and a rod.

The principle of operation is described below:
The long stroke stepping Mode M1 is produced by step accumulation with an appropriate 0-150V saw tooth voltage. The short stroke deformation Mode M2 is produced by deformation of the APA®, which is simply proportional to the excitation voltage between −20 to +150V.

SPA can be driven by CEDRAT TECHNOLOGIES lab linear amplifiers such as the LA75 family, ordered by a signal generator, or by specific electronics. Only one channel per SPA is required. Different position sensors can be implemented for closed loop operations thanks to UC75 numerical controller. Please ask CEDRAT TECHNOLOGIES for further details about electronics and signals.

All standard APAs® from CEDRAT TECHNOLOGIES can be operated as a SPA with appropriate add parts. Therefore the SPA concept can be considered as a way to expand the limited stroke of the APA®. However smaller APAs® (series µXS, XXS, S, SM, M) are of higher interest, because they allow to realize very small flat piezo motors. Non magnetic actuators APAs® (NM option) can be selected for non magnetic actuation. Temperature range is typically −40°C to +80°C, but it can be extended to cryogenic (77K) or warm (140°C) temperatures upon request (HT option).
Stepping Piezo Actuators

Hence, some vacuum and cryogenic tests have been run on the SPA showing a really good behavior in these conditions.

Performances

Typical performances are given in the following table. This table is not exhaustive as many other actuators can be designed by CEDRAT TECHNOLOGIES using its design tools, lab facilities and technological know-how.

Applications

<table>
<thead>
<tr>
<th>References</th>
<th>Unit</th>
<th>SPA µXS</th>
<th>SPA XS-S</th>
<th>SPA XS-F</th>
<th>SPA SM-S</th>
<th>SPA SM-F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>Preliminary</td>
<td>Preliminary</td>
<td>Preliminary</td>
<td>Preliminary</td>
<td>Preliminary</td>
<td>Preliminary</td>
</tr>
<tr>
<td>Blocking force at rest (M1, M2)</td>
<td>N</td>
<td>0.3</td>
<td>3</td>
<td>8</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>Stroke (M1)</td>
<td>mm</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Actuation force (M1)</td>
<td>N</td>
<td>0.1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Max speed (M1)</td>
<td>mm/s</td>
<td>20</td>
<td>20</td>
<td>5</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>Short high resolution stroke (M2)</td>
<td>μm</td>
<td>60</td>
<td>55</td>
<td>55</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Bandwidth (M2)</td>
<td>kHz</td>
<td>1.13</td>
<td>0.8</td>
<td>0.8</td>
<td>0.57</td>
<td>0.57</td>
</tr>
<tr>
<td>Resolution (M2)</td>
<td>nm</td>
<td>< 6</td>
<td>< 5.5</td>
<td>< 5.5</td>
<td>< 8</td>
<td>< 8</td>
</tr>
<tr>
<td>Capacitance (M1, M2)</td>
<td>μF</td>
<td>0.02</td>
<td>0.25</td>
<td>0.25</td>
<td>1.55</td>
<td>1.55</td>
</tr>
<tr>
<td>Height along active axis</td>
<td>mm</td>
<td>13</td>
<td>20</td>
<td>20</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Base size</td>
<td>mm2</td>
<td>3 x 13</td>
<td>9 x 13</td>
<td>9 x 13</td>
<td>12 x 27</td>
<td>12 x 27</td>
</tr>
<tr>
<td>AES compatibility</td>
<td>A - B - C</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>CAES compatibility</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Stepping Piezoelectric Actuators (SPA) find applications as micro/nano positioning, locking mechanism, valves actuators. They can be used in instrumentation, especially microscopes (AFM, STM), non-magnetic equipment (MRI), space telescopes. Multi-axis OEM devices can be developed. SPA is a complement to the Amplified Piezoelectric Actuators (APA®) from CEDRAT TECHNOLOGIES.

Comparison with other piezomotors

CEDRAT TECHNOLOGIES has developed other kinds of piezoelectric motors for OEM applications, such as the space qualified LPM20, the RPA or the RPMHPP. Ultrasonic piezo motors such as the LPM 20 or the RPA are based on an ultrasonic vibration from a piezo stator working at resonance to induce a relative motion into a second body. Quasi static stepping piezo motors such as the RPMHPP are based on a combination of normal and tangential displacements from a piezo stator made of customized APA® and requires 2 channels electronics.

The advantages of the SPA versus other kinds of piezoelectric motors:

- A high degree of miniaturization & a firm connection between the load and the motor.
- A strong heritage from the APA® (robustness, long life time, space qualification, vacuum qualification ...).
- A fine adjustment with nanometer resolution on a large range due to the APA® amplified stroke.
- A fine adjustment with a high bandwidth due to the APA® large bandwidth.
- A great simplicity as it uses only one standard Amplified Piezo Actuator APA® an one channel.
- A low cost solution, based on the APA® proven technology, which is in favor of industrial applications.

For more information, please contact:

CEDRAT TECHNOLOGIES
15 Chemin de Malacher - Inovallée
38246 Meylan Cedex - France
actuator@cedrat.com
Phone: +33 (0)4 76 90 50 45 - Fax: +33 (0)4 56 38 08 30