Principle

Any ferromagnetic material is able to be subject to magnetostriction. It means that there is a coupling between the mechanical and magnetic states of the material. Because of the “direct magnetostrictive effect”, the material displays a mechanical anisotropic deformation when it is put under a magnetic field. Conversely, the magnetic permeability of such a material changes as a function of the applied mechanical stress. This is called the “inverse magnetostrictive” effect. Therefore, under appropriate magnetic conditions, a measurement of the material’s magnetic permeability gives an indication of its internal mechanical stress state. Finally, the material’s permeability can be measured indirectly by using a coil placed next or around the material (Fig. 1).

Design issues

Design of a prototype sensor

A sensor for the measurement of stresses in a bridge cable has been developed. From electromagnetic analysis realised with our numeric tools like Flux3D (Fig. 2), to testing in laboratory, (Fig. 3 and 4), considering different design steps, we evaluated and adapted the various parameters of the sensor in order to get the best quality of measurement (frequency of measurement, level of magnetic polarisation versus the $B(H)$ characteristic of the considered material, impact of eddy currents, temperature, electromagnetic compatibility of the magnetic circuit, ...).

We built a laboratory test bench to measure the magnetostrictive effect of various materials in order to evaluate if we can use them in such kind of sensor.

Figure 1: Principle of sensor using magnetostrictive effect.

- (1) Ferromagnetic material,
- (2) Magnetising coil to reach the operating point on the $B(H)$ curve of the material,
- (3) A measurement coil to get its impedance,
- (4) The magnetic circuit.

Figure 2: Electromagnetic analysis of the sensor with Flux3D.

Figure 3: Design and assembly of the sensor around of the cable.

Figure 4: Test of the sensor in laboratory.
MagnetostRICTIVE Stress Sensor

Performance

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Unit</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td></td>
<td>Magnetic steel</td>
</tr>
<tr>
<td>Diameter of the sample</td>
<td>mm</td>
<td>16</td>
</tr>
<tr>
<td>Active length of the sample</td>
<td>mm</td>
<td>300</td>
</tr>
<tr>
<td>Internal stresses</td>
<td>% Re</td>
<td>60</td>
</tr>
<tr>
<td>Relative variation of inductance</td>
<td>%</td>
<td>20</td>
</tr>
<tr>
<td>Precision</td>
<td>%</td>
<td>2.7</td>
</tr>
<tr>
<td>Power supply</td>
<td>W</td>
<td>2</td>
</tr>
</tbody>
</table>

For more information, please contact:

CEDRAT TECHNOLOGIES
15 Chemin de Malacher - Inovallée
38246 Meylan Cedex - France
actuator@cedrat.com
Phone: +33 (0)4 76 90 50 45 - Fax: +33 (0)4 56 38 08 30

Applications

Stress sensor used in applications such as monitoring stresses in bridge and nuclear power plant structure.
Stress sensor put into structures such as on the bridge cables so as to prevent any risks of rupture or relaxation. Torsion and flexion stress sensors...
A system association with computation means, MRS sensor can be used as ID tags for remote identification of objects. CEDRAT TECHNOLOGIES has a 10 years experience of this application.

Figure 5: A typical application of the magnetostRICTive stress sensor: monitoring stresses in bridge cables.